enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Grandi's_series

    (5) the result does not exist (4) the result is ⁠ 1 / 2 ⁠ (3) the result is 1 (2) the result is infinite (30) no answer. The researcher, Giorgio Bagni, interviewed several of the students to determine their reasoning. Some 16 of them justified an answer of 0 using logic similar to that of Grandi and Riccati. Others justified ⁠ 1 / 2 ...

  3. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    [1] [2] Every term of the harmonic series after the first is the harmonic mean of the neighboring terms, so the terms form a harmonic progression; the phrases harmonic mean and harmonic progression likewise derive from music. [2] Beyond music, harmonic sequences have also had a certain popularity with architects.

  4. Principia Mathematica - Wikipedia

    en.wikipedia.org/wiki/Principia_Mathematica

    The ramified type (τ 1,...,τ m |σ 1,...,σ n) can be modeled as the product of the type (τ 1,...,τ m,σ 1,...,σ n) with the set of sequences of n quantifiers (∀ or ∃) indicating which quantifier should be applied to each variable σ i. (One can vary this slightly by allowing the σs to be quantified in any order, or allowing them to ...

  5. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    In mathematics, the infinite series ⁠ 1 / 2 ⁠ + ⁠ 1 / 4 ⁠ + ⁠ 1 / 8 ⁠ + ⁠ 1 / 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as

  6. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    The computation of (1 + ⁠ iπ / N ⁠) N is displayed as the combined effect of N repeated multiplications in the complex plane, with the final point being the actual value of (1 + ⁠ iπ / N ⁠) N. It can be seen that as N gets larger (1 + ⁠ iπ / N ⁠) N approaches a limit of −1. Euler's identity asserts that is

  7. Spin-1/2 - Wikipedia

    en.wikipedia.org/wiki/Spin-1/2

    When the probabilities are calculated, the −1 is squared, (−1) 2 = 1, so the predicted physics is the same as in the starting position. Also, in a spin-⁠ 1 / 2 ⁠ particle there are only two spin states and the amplitudes for both change by the same −1 factor, so the interference effects are identical, unlike the case for higher spins ...

  8. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = ⁠ 1 / 6 ⁠, B 4 = ⁠− + 1 / 30 ⁠, and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]

  9. Multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_inverse

    For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).