enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    The number of perfect matchings in a complete graph K n (with n even) is given by the double factorial (n − 1)!!. [13] The numbers of matchings in complete graphs, without constraining the matchings to be perfect, are given by the telephone numbers. [14] The number of perfect matchings in a graph is also known as the hafnian of its adjacency ...

  3. FKT algorithm - Wikipedia

    en.wikipedia.org/wiki/FKT_algorithm

    The sum of weighted perfect matchings can also be computed by using the Tutte matrix for the adjacency matrix in the last step. Kuratowski's theorem states that a finite graph is planar if and only if it contains no subgraph homeomorphic to K 5 (complete graph on five vertices) or K 3,3 (complete bipartite graph on two partitions of size three).

  4. Perfect matching - Wikipedia

    en.wikipedia.org/wiki/Perfect_matching

    However, counting the number of perfect matchings, even in bipartite graphs, is #P-complete. This is because computing the permanent of an arbitrary 0–1 matrix (another #P-complete problem) is the same as computing the number of perfect matchings in the bipartite graph having the given matrix as its biadjacency matrix.

  5. ♯P-completeness of 01-permanent - Wikipedia

    en.wikipedia.org/wiki/%E2%99%AFP-completeness_of...

    Since any 0–1 matrix is the biadjacency matrix of some bipartite graph, Valiant's theorem implies [9] that the problem of counting the number of perfect matchings in a bipartite graph is #P-complete, and in conjunction with Toda's theorem this implies that it is hard for the entire polynomial hierarchy. [10] [11]

  6. Kőnig's theorem (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Kőnig's_theorem_(graph...

    Kőnig had announced in 1914 and published in 1916 the results that every regular bipartite graph has a perfect matching, [11] and more generally that the chromatic index of any bipartite graph (that is, the minimum number of matchings into which it can be partitioned) equals its maximum degree [12] – the latter statement is known as Kőnig's ...

  7. Bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Bipartite_graph

    When modelling relations between two different classes of objects, bipartite graphs very often arise naturally. For instance, a graph of football players and clubs, with an edge between a player and a club if the player has played for that club, is a natural example of an affiliation network, a type of bipartite graph used in social network analysis.

  8. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    Given two sets, A and T, together with a weight function C : A × T → R. Find a bijection f : A → T such that the cost function: (, ()) is minimized. Usually the weight function is viewed as a square real-valued matrix C, so that the cost function is written down as:

  9. Hafnian - Wikipedia

    en.wikipedia.org/wiki/Hafnian

    The hafnian of an adjacency matrix of a graph is the number of perfect matchings (also known as 1-factors) in the graph. This is because a partition of { 1 , 2 , … , 2 n } {\displaystyle \{1,2,\dots ,2n\}} into subsets of size 2 can also be thought of as a perfect matching in the complete graph K 2 n {\displaystyle K_{2n}} .