Search results
Results from the WOW.Com Content Network
The number of perfect matchings in a complete graph K n (with n even) is given by the double factorial (n − 1)!!. [13] The numbers of matchings in complete graphs, without constraining the matchings to be perfect, are given by the telephone numbers. [14] The number of perfect matchings in a graph is also known as the hafnian of its adjacency ...
Kőnig had announced in 1914 and published in 1916 the results that every regular bipartite graph has a perfect matching, [11] and more generally that the chromatic index of any bipartite graph (that is, the minimum number of matchings into which it can be partitioned) equals its maximum degree [12] – the latter statement is known as Kőnig's ...
However, counting the number of perfect matchings, even in bipartite graphs, is #P-complete. This is because computing the permanent of an arbitrary 0–1 matrix (another #P-complete problem) is the same as computing the number of perfect matchings in the bipartite graph having the given matrix as its biadjacency matrix.
It was conjectured by Lovász and Plummer that the number of perfect matchings contained in a cubic, bridgeless graph is exponential in the number of the vertices of the graph n. [5] The conjecture was first proven for bipartite, cubic, bridgeless graphs by Voorhoeve (1979), later for planar, cubic, bridgeless graphs by Chudnovsky & Seymour (2012).
Otherwise, each column in K has two 1s. Since the graph is bipartite, the rows can be partitioned into two subsets, such that in each column, one 1 is in the top subset and the other 1 is in the bottom subset. This means that the sum of the top subset and the sum of the bottom subset are both equal to 1 E minus a vector of |E| ones.
The matching width of a hypergraph H, denoted mw(H), is the maximum, over all matchings M in H, of the minimum size of a subset of E that pins M. [12] Since E contains all matchings in E, the width of H is obviously at least as large as the matching-width of H. Aharoni and Haxell proved the following condition: Let H = (X + Y, E) be a bipartite ...
The number of possible perfect matchings in a bipartite graph with equal-sized partitions can therefore be estimated via the degrees of the vertices of any of the two partitions. [ 7 ] Related statements
Since any 0–1 matrix is the biadjacency matrix of some bipartite graph, Valiant's theorem implies [9] that the problem of counting the number of perfect matchings in a bipartite graph is #P-complete, and in conjunction with Toda's theorem this implies that it is hard for the entire polynomial hierarchy. [10] [11]