Search results
Results from the WOW.Com Content Network
A Lagged Fibonacci generator (LFG or sometimes LFib) is an example of a pseudorandom number generator. This class of random number generator is aimed at being an improvement on the 'standard' linear congruential generator. These are based on a generalisation of the Fibonacci sequence. The Fibonacci sequence may be described by the recurrence ...
Umple code embedding one or more of Java, Python, C++, PHP or Ruby Pure Umple code describing associations, patterns, state machines, etc. Java, Python, C++, PHP, Ruby, ECcore, Umlet, Yuml, Textuml, JSON, Papyrus XMI, USE, NuXMV, Alloy Velocity apache: Java Passive [2] Tier Templates Java driver code Any text Yii2 Gii: PHP Active Tier Database ...
Default generator in R and the Python language starting from version 2.3. Xorshift: 2003 G. Marsaglia [26] It is a very fast sub-type of LFSR generators. Marsaglia also suggested as an improvement the xorwow generator, in which the output of a xorshift generator is added with a Weyl sequence.
An example of a Python generator returning an iterator for the Fibonacci numbers using Python's yield statement follows: def fibonacci ( limit ): a , b = 0 , 1 for _ in range ( limit ): yield a a , b = b , a + b for number in fibonacci ( 100 ): # The generator constructs an iterator print ( number )
In computer science, a generator is a routine that can be used to control the iteration behaviour of a loop. All generators are also iterators. [1] A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values.
In Python 3.x the range() function [28] returns a generator which computes elements of the list on demand. Elements are only generated when they are needed (e.g., when print(r[3]) is evaluated in the following example), so this is an example of lazy or deferred evaluation:
The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.
To encode an integer N: . Find the largest Fibonacci number equal to or less than N; subtract this number from N, keeping track of the remainder.; If the number subtracted was the i th Fibonacci number F(i), put a 1 in place i − 2 in the code word (counting the left most digit as place 0).