Search results
Results from the WOW.Com Content Network
A "closed universe" is necessarily a closed manifold. An "open universe" can be either a closed or open manifold. For example, in the Friedmann–Lemaître–Robertson–Walker (FLRW) model, the universe is considered to be without boundaries, in which case "compact universe" could describe a universe that is a closed manifold.
Recent observations conclude, from 7.5 billion years after the Big Bang, that the expansion rate of the universe has probably been increasing, commensurate with the Open Universe theory. [9] However, measurements made by the Wilkinson Microwave Anisotropy Probe suggest that the universe is either flat or very close to flat. [2]
Infinite expansion does not constrain the overall spatial curvature of the universe.It can be open (with negative spatial curvature), flat, or closed (positive spatial curvature), although if it is closed, sufficient dark energy must be present to counteract the gravitational forces or else the universe will end in a Big Crunch.
As the universe expands and the matter in it thins, the gravitational attraction decreases (since it is proportional to the density), while the cosmological repulsion increases. Thus, the ultimate fate of the ΛCDM universe is a near-vacuum expanding at an ever-increasing rate under the influence of the cosmological constant.
Freeman Dyson in 2005. Dyson's eternal intelligence (the Dyson Scenario) is a hypothetical concept, proposed by Freeman Dyson in 1979, by which an immortal society of intelligent beings in an open universe may escape the prospect of the heat death of the universe by performing an infinite number of computations (as defined below) though expending only a finite amount of energy.
The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach absolute zero, an event potentially followed by a reformation of the universe starting with another Big Bang.
The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...
Since 2003, Jean-Pierre Luminet, et al., and other groups have suggested that the shape of the universe may be the Poincaré dodecahedral space. Is the shape unmeasurable, the Poincaré space, or another 3-manifold? Cosmic inflation: Is the theory of cosmic inflation in the very early universe correct? If so, what are the details of this epoch?