Search results
Results from the WOW.Com Content Network
A nucleic acid sequence is a succession of bases within the nucleotides forming alleles within a DNA (using GACT) or RNA (GACU) molecule. This succession is denoted by a series of a set of five different letters that indicate the order of the nucleotides.
DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA.It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine.
The following DNA sequences illustrate pair double-stranded patterns. By convention, the top strand is written from the 5′-end to the 3′-end; thus, the bottom strand is written 3′ to 5′. A base-paired DNA sequence: ATCGATTGAGCTCTAGCG TAGCTAACTCGAGATCGC The corresponding RNA sequence, in which uracil is substituted for thymine in the RNA ...
DNA exists in many possible conformations that include A-DNA, B-DNA, and Z-DNA forms, although only B-DNA and Z-DNA have been directly observed in functional organisms. [14] The conformation that DNA adopts depends on the hydration level, DNA sequence, the amount and direction of supercoiling, chemical modifications of the bases, the type and ...
The HapMap is a haplotype map of the human genome, "which will describe the common patterns of human DNA sequence variation." [79] It catalogs the patterns of small-scale variations in the genome that involve single DNA letters, or bases.
DNA and RNA also contain other (non-primary) bases that have been modified after the nucleic acid chain has been formed. In DNA, the most common modified base is 5-methylcytosine (m 5 C). In RNA, there are many modified bases, including those contained in the nucleosides pseudouridine (Ψ), dihydrouridine (D), inosine (I), and 7-methylguanosine ...
Sequences can be complementary to another sequence in that the base on each position is complementary as well as in the reverse order. An example of a complementary sequence to AGCT is TCGA. DNA is double-stranded containing both a sense strand and an antisense strand. Therefore, the complementary sequence will be to the sense strand. [4]
DNA sequencing is the process of determining the nucleotide order of a given DNA fragment. So far, most DNA sequencing has been performed using the chain termination method developed by Frederick Sanger. This technique uses sequence-specific termination of a DNA synthesis reaction using modified nucleotide substrates.