enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Alpha decay - Wikipedia

    en.wikipedia.org/wiki/Alpha_decay

    Alpha decay is by far the most common form of cluster decay, where the parent atom ejects a defined daughter collection of nucleons, leaving another defined product behind. It is the most common form because of the combined extremely high nuclear binding energy and relatively small mass of the alpha particle.

  3. Alpha particle - Wikipedia

    en.wikipedia.org/wiki/Alpha_particle

    Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. [5] They are generally produced in the process of alpha decay but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α.

  4. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.

  5. Decay chain - Wikipedia

    en.wikipedia.org/wiki/Decay_chain

    The four most common modes of radioactive decay are: alpha decay, beta decay, inverse beta decay (considered as both positron emission and electron capture), and isomeric transition. Of these decay processes, only alpha decay (fission of a helium-4 nucleus) changes the atomic mass number ( A ) of the nucleus, and always decreases it by four.

  6. Quantum tunnelling - Wikipedia

    en.wikipedia.org/wiki/Quantum_tunnelling

    Radioactive decay is a relevant issue for astrobiology as this consequence of quantum tunnelling creates a constant energy source over a large time interval for environments outside the circumstellar habitable zone where insolation would not be possible (subsurface oceans) or effective.

  7. Nuclear chemistry - Wikipedia

    en.wikipedia.org/wiki/Nuclear_chemistry

    Ernest Rutherford, working in Canada and England, showed that radioactive decay can be described by a simple equation (a linear first degree derivative equation, now called first order kinetics), implying that a given radioactive substance has a characteristic "half-life" (the time taken for the amount of radioactivity present in a source to ...

  8. Valley of stability - Wikipedia

    en.wikipedia.org/wiki/Valley_of_stability

    Heavy nuclides are susceptible to α decay, and these nuclear reactions have the generic form, A Z X → A-4 Z-2 X′ + 4 2 He. As in β decay, the decay product X′ has greater binding energy and it is closer to the middle of the valley of stability. The α particle carries away two neutrons and two protons, leaving a lighter nuclide. Since ...

  9. Geiger–Nuttall law - Wikipedia

    en.wikipedia.org/wiki/Geiger–Nuttall_law

    In practice, this means that alpha particles from all alpha-emitting isotopes across many orders of magnitude of difference in half-life, all nevertheless have about the same decay energy. Formulated in 1911 by Hans Geiger and John Mitchell Nuttall as a relation between the decay constant and the range of alpha particles in air, [ 1 ] in its ...