Search results
Results from the WOW.Com Content Network
The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The rule is especially applicable to carbon, nitrogen, oxygen, and the halogens; although more generally the ...
Octet rule is used with Lewis structures for main group elements, especially the lighter ones such as carbon, nitrogen, and oxygen, 18-electron rule [2] in inorganic chemistry and organometallic chemistry of transition metals, Hückel's rule for the π-electrons of aromatic compounds,
Additional modifications to the octet rule have been attempted to involve ionic characteristics in hypervalent bonding. As one of these modifications, in 1951, the concept of the 3-center 4-electron (3c-4e) bond , which described hypervalent bonding with a qualitative molecular orbital , was proposed.
Satisfy the octet rule. Both oxygen atoms currently have 8 electrons assigned to them. The nitrogen atom has only 6 electrons assigned to it. One of the lone pairs on an oxygen atom must form a double bond, but either atom will work equally well. Therefore, there is a resonance structure. Tie up loose ends.
According to this theory a covalent bond is formed between two atoms by the overlap of half filled valence atomic orbitals of each atom containing one unpaired electron. Valence Bond theory describes chemical bonding better than Lewis Theory, which states that atoms share or transfer electrons so that they achieve the octet rule.
The nitrogen rule states that organic molecules that contain hydrogen, carbon, nitrogen, oxygen, silicon, phosphorus, sulfur, or the halogens have an odd nominal mass if they have an odd number of nitrogen atoms or an even mass if they have an even number of nitrogen atoms are present.
As pH rises the chromate ion becomes ever more predominant, until it is the only species in solutions with pH > 6.75. At pH < pK 1 the hydrogen chromate ion, HCrO − 4 is predominant in dilute solution. The dichromate ion, Cr 2 O 2− 7, is predominant in more concentrated solutions, except at high pH.
Alternatively, electron-deficiency describes molecules or ions that function as electron acceptors. Such electron-deficient species obey the octet rule, but they have (usually mild) oxidizing properties. [4] 1,3,5-Trinitrobenzene and related polynitrated aromatic compounds are often described as electron-deficient. [5]