enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. SIMPLE algorithm - Wikipedia

    en.wikipedia.org/wiki/SIMPLE_algorithm

    SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas Patankar at Imperial College London in the early 1970s. Since then it has been extensively used by many researchers to solve different kinds of fluid flow and heat transfer problems. [1]

  3. Projection method (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Projection_method_(fluid...

    In computational fluid dynamics, the projection method, also called Chorin's projection method, is an effective means of numerically solving time-dependent incompressible fluid-flow problems. It was originally introduced by Alexandre Chorin in 1967 [1] [2] as an efficient means of solving the incompressible Navier-Stokes equations.

  4. SIMPLEC algorithm - Wikipedia

    en.wikipedia.org/wiki/SIMPLEC_algorithm

    The steps involved are same as the SIMPLE algorithm and the algorithm is iterative in nature. p*, u*, v* are guessed Pressure, X-direction velocity and Y-direction velocity respectively, p', u', v' are the correction terms respectively and p, u, v are the correct fields respectively; Φ is the property for which we are solving and d terms are involved with the under relaxation factor.

  5. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    A major part of this network will consist of interconnected pipes. This network creates a special class of problems in hydraulic design, with solution methods typically referred to as pipe network analysis. Water utilities generally make use of specialized software to automatically solve these problems.

  6. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  7. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_existence...

    This can be compensated for by a pressure gradient, with higher pressure near the obstacle and lower pressure farther away. As a result of these nonlinear effects, the Navier–Stokes equations in this case become difficult to solve, and approximations or numerical methods must be used to find the velocity and pressure fields in the flow.

  8. Pressure-correction method - Wikipedia

    en.wikipedia.org/wiki/Pressure-correction_method

    The pressure value that is attempted to compute, is such that when plugged into momentum equations a divergence-free velocity field results. The mass imbalance is often also used for control of the outer loop. The name of this class of methods stems from the fact that the correction of the velocity field is computed through the pressure-field.

  9. PISO algorithm - Wikipedia

    en.wikipedia.org/wiki/PISO_algorithm

    It is an extension of the SIMPLE algorithm used in computational fluid dynamics to solve the Navier-Stokes equations. PISO is a pressure-velocity calculation procedure for the Navier-Stokes equations developed originally for non-iterative computation of unsteady compressible flow, but it has been adapted successfully to steady-state problems.