Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
This mathematical expression of the force did not imply a cause. Newton considered action-at-a-distance to be an inadequate model for gravity. [6] Newton, in his words, considered action at a distance to be: so great an Absurdity that I believe no Man who has in philosophical Matters a competent Faculty of thinking can ever fall into it. [7]
Putting the Sun immobile at the origin, when the Earth is moving in an orbit of radius R with velocity v presuming that the gravitational influence moves with velocity c, moves the Sun's true position ahead of its optical position, by an amount equal to vR/c, which is the travel time of gravity from the sun to the Earth times the relative ...
The graviton's Compton wavelength is at least 1.6 × 10 16 m, or about 1.6 light-years, corresponding to a graviton mass of no more than 7.7 × 10 −23 eV/c 2. [18] This relation between wavelength and mass-energy is calculated with the Planck–Einstein relation , the same formula that relates electromagnetic wavelength to photon energy .
Gravity is usually measured in units of acceleration.In the SI system of units, the standard unit of acceleration is metres per second squared (m/s 2).Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2.
Gravitational redshift can be interpreted as a consequence of the equivalence principle (that gravitational effects are locally equivalent to inertial effects and the redshift is caused by the Doppler effect) [5] or as a consequence of the mass–energy equivalence and conservation of energy ('falling' photons gain energy), [6] [7] though there ...
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.
The strong equivalence principle can be tested by 1) finding orbital variations in massive bodies (Sun-Earth-Moon), 2) variations in the gravitational constant (G) depending on nearby sources of gravity or on motion, or 3) searching for a variation of Newton's gravitational constant over the life of the universe [14]: 47