Search results
Results from the WOW.Com Content Network
Complex exponential function: The exponential function exactly maps all lines not parallel with the real or imaginary axis in the complex plane, to all logarithmic spirals in the complex plane with centre at : () = (+) + ⏟ = + = ( + ) ⏟ The pitch angle of the logarithmic spiral is the angle between the line and the imaginary axis.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
On a log–linear plot (logarithmic scale on the y-axis), pick some fixed point (x 0, F 0), where F 0 is shorthand for F(x 0), somewhere on the straight line in the above graph, and further some other arbitrary point (x 1, F 1) on the same graph. The slope formula of the plot is:
Exponential functions occur very often in solutions of differential equations. The exponential functions can be defined as solutions of differential equations. Indeed, the exponential function is a solution of the simplest possible differential equation, namely ′ = .
Figure 1 illustrates how this looks. It presents two plots generated using 10,000 simulated points. The left plot, titled 'Concave Line with Log-Normal Noise', displays a scatter plot of the observed data (y) against the independent variable (x). The red line represents the 'Median line', while the blue line is the 'Mean line'.
Its complementary cumulative distribution function is a stretched exponential function. The Weibull distribution is related to a number of other probability distributions; in particular, it interpolates between the exponential distribution (k = 1) and the Rayleigh distribution (k = 2 and =). [5]
Graphs of maps, especially those of one variable such as the logistic map, are key to understanding the behavior of the map. One of the uses of graphs is to illustrate fixed points, called points. Draw a line y = x (a 45° line) on the graph of the map. If there is a point where this 45° line intersects with the graph, that point is a fixed point.
The compressed exponential function (with β > 1) has less practical importance, with the notable exceptions of β = 2, which gives the normal distribution, and of compressed exponential relaxation in the dynamics of amorphous solids. [1] In mathematics, the stretched exponential is also known as the complementary cumulative Weibull distribution.