Search results
Results from the WOW.Com Content Network
X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering, when there is no change in the energy of the waves. The resulting map of the directions of the X-rays far from the sample is called a diffraction pattern.
An X-ray diffraction pattern of a crystallized enzyme. The pattern of spots (reflections) and the relative strength of each spot (intensities) can be used to determine the structure of the enzyme. The relative intensities of the reflections provides information to determine the arrangement of molecules within the crystal in atomic detail.
XRD may refer to: X-ray diffraction , used to study the structure, composition, and physical properties of materials Extensible Resource Descriptor , an XML format for discovery of metadata about a web resource
Small-angle X-ray scattering (SAXS) is a small-angle scattering technique by which nanoscale density differences in a sample can be quantified. This means that it can determine nanoparticle size distributions, resolve the size and shape of (monodisperse) macromolecules, determine pore sizes and characteristic distances of partially ordered materials. [1]
X-ray diffraction (XRD) is still the most used method for structural analysis of chemical compounds. Yet, with increasing detail on the relation of K β {\displaystyle K_{\beta }} -line spectra and the surrounding chemical environment of the ionized metal atom, measurements of the so-called valence-to-core (V2C) energy region become ...
To measure the intensity along a CTR, the sample must be rotated in the X-ray beam so that the origin of the Ewald sphere is translated and the sphere intersects the rod at a different location in reciprocal space. Performing a rodscan in this way requires accurate coordinated motion of the sample and the detector along different axes.
The first X-ray diffraction experiment was conducted in 1912 by Max von Laue, [7] while electron diffraction was first realized in 1927 in the Davisson–Germer experiment [8] and parallel work by George Paget Thomson and Alexander Reid. [9] These developed into the two main branches of crystallography, X-ray crystallography and electron ...
Nevertheless, powder X-ray diffraction is a powerful and useful technique in its own right. It is mostly used to characterize and identify phases, and to refine details of an already known structure, rather than solving unknown structures. Advantages of the technique are: simplicity of sample preparation; rapidity of measurement