enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    The speed of light in vacuum is usually denoted by a lowercase c, for "constant" or the Latin celeritas (meaning 'swiftness, celerity'). In 1856, Wilhelm Eduard Weber and Rudolf Kohlrausch had used c for a different constant that was later shown to equal √ 2 times the speed of light in vacuum.

  3. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    A vacuum can be viewed not as empty space but as the combination of all zero-point fields. In quantum field theory this combination of fields is called the vacuum state, its associated zero-point energy is called the vacuum energy and the average energy value is called the vacuum expectation value (VEV) also called its condensate.

  4. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇ 2 is the Laplace operator. In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations.

  5. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    c is the speed of light in vacuum h is the Planck constant The photon energy at 1 Hz is equal to 6.626 070 15 × 10 −34 J , which is equal to 4.135 667 697 × 10 −15 eV .

  6. Vacuum energy - Wikipedia

    en.wikipedia.org/wiki/Vacuum_energy

    The field strength of vacuum energy is a concept proposed in a theoretical study that explores the nature of the vacuum and its relationship to gravitational interactions. The study derived a mathematical framework that uses the field strength of vacuum energy as an indicator of the bulk (spacetime) resistance to localized curvature.

  7. Phonon - Wikipedia

    en.wikipedia.org/wiki/Phonon

    When measuring optical phonon energy experimentally, optical phonon frequencies are sometimes given in spectroscopic wavenumber notation, where the symbol ω represents ordinary frequency (not angular frequency), and is expressed in units of cm −1. The value is obtained by dividing the frequency by the speed of light in vacuum.

  8. Vacuum permittivity - Wikipedia

    en.wikipedia.org/wiki/Vacuum_permittivity

    Vacuum permittivity, commonly denoted ε 0 (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space , the electric constant , or the distributed capacitance of the vacuum.

  9. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    where E is the energy of the wave, ħ is the reduced Planck constant, and c is the speed of light in a vacuum. For the special case of a matter wave, for example an electron wave, in the non-relativistic approximation (in the case of a free particle, that is, the particle has no potential energy):