Search results
Results from the WOW.Com Content Network
There are then questions as to whether, if the records are combined to form a single longer set of records, those records can be considered homogeneous over time. An example of homogeneity testing of wind speed and direction data can be found in Romanić et al., 2015. [9]
Statistical testing for a non-zero heterogeneity variance is often done based on Cochran's Q [13] or related test procedures. This common procedure however is questionable for several reasons, namely, the low power of such tests [14] especially in the very common case of only few estimates being combined in the analysis, [15] [7] as well as the specification of homogeneity as the null ...
The complementary notion is called heteroscedasticity, also known as heterogeneity of variance. The spellings homos k edasticity and heteros k edasticity are also frequently used. “Skedasticity” comes from the Ancient Greek word “skedánnymi”, meaning “to scatter”.
Homogeneity and heterogeneity; only ' b ' is homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image.A homogeneous feature is uniform in composition or character (i.e. color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous ...
For example, individual demand can be aggregated to market demand if and only if individual preferences are of the Gorman polar form (or equivalently satisfy linear and parallel Engel curves). Under this condition, even heterogeneous preferences can be represented by a single aggregate agent simply by summing over individual demand to market ...
An example of cluster sampling is area sampling or geographical cluster sampling.Each cluster is a geographical area in an area sampling frame.Because a geographically dispersed population can be expensive to survey, greater economy than simple random sampling can be achieved by grouping several respondents within a local area into a cluster.
In statistics, sampling bias is a bias in which a sample is collected in such a way that some members of the intended population have a lower or higher sampling probability than others. It results in a biased sample [1] of a population (or non-human factors) in which all individuals, or instances, were not equally likely to have been selected. [2]
For example, an interviewer may be told to sample 200 females and 300 males between the age of 45 and 60. It is this second step which makes the technique one of non-probability sampling. In quota sampling the selection of the sample is non-random. For example, interviewers might be tempted to interview those who look most helpful.