Search results
Results from the WOW.Com Content Network
Linear regression plays an important role in the subfield of artificial intelligence known as machine learning. The linear regression algorithm is one of the fundamental supervised machine-learning algorithms due to its relative simplicity and well-known properties. [34]
In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...
A machine learning model is a type of mathematical ... Multivariate linear regression extends the concept of linear regression to handle multiple dependent variables ...
Machine learning, the subset of artificial intelligence that teaches computers to perform tasks through examples and experience, is a hot area of research and development.
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...
In machine learning this is known as one-hot encoding. Dummy variables are commonly used in regression analysis to represent categorical variables that have more than two levels, such as education level or occupation.
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.
In machine learning, supervised learning (SL) is a paradigm where a model is trained using input objects (e.g. a vector of predictor variables) and desired output values (also known as a supervisory signal), which are often human-made labels.