Search results
Results from the WOW.Com Content Network
This effect would make the mass act as a kind of gravitational lens. However, as he only considered the effect of deflection around a single star, he seemed to conclude that the phenomenon was unlikely to be observed for the foreseeable future since the necessary alignments between stars and observer would be highly improbable.
While gravitational lensing preserves surface brightness, as dictated by Liouville's theorem, lensing does change the apparent solid angle of a source. The amount of magnification is given by the ratio of the image area to the source area. For a circularly symmetric lens, the magnification factor μ is given by
The key difference between an embedded lens and a traditional lens is that the mass of a standard lens contributes to the mean of the cosmological density, whereas that of an embedded lens does not. Consequently, the gravitational potential of an embedded lens has a finite range, i.e., there is no lensing effect outside of the void.
In particular, gravitational lensing provides one way to measure the distribution of dark matter, which does not give off light and can be observed only by its gravitational effects. One particularly interesting application are large-scale observations, where the lensing masses are spread out over a significant fraction of the observable ...
TeVeS has enjoyed some success in making contact with gravitational lensing and structure formation observations, [51] but faces problems when confronted with data on the anisotropy of the cosmic microwave background, [52] the lifetime of compact objects, [53] and the relationship between the lensing and matter overdensity potentials. [54]
Gravitational lensing is an effect of gravitation, most commonly associated with General relativity. Subcategories. This category has the following 2 subcategories ...
Huchra's lens is the lensing galaxy of the Einstein Cross (Quasar 2237+30); it is also called ZW 2237+030 or QSO 2237+0305 G.It exhibits the phenomenon of gravitational lensing that was postulated by Albert Einstein when he realized that gravity would be able to bend light and thus could have lens-like effects.
Microlensing is caused by the same physical effect as strong gravitational lensing and weak gravitational lensing but it is studied by very different observational techniques. In strong and weak lensing, the mass of the lens is large enough (mass of a galaxy or galaxy cluster) that the displacement of light by the lens can be resolved with a ...