enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Normal_(geometry)

    For a plane given by the general form plane equation + + + =, the vector = (,,) is a normal. For a plane whose equation is given in parametric form (,) = + +, where is a point on the plane and , are non-parallel vectors pointing along the plane, a normal to the plane is a vector normal to both and , which can be found as the cross product =.

  3. Normal plane (geometry) - Wikipedia

    en.wikipedia.org/wiki/Normal_plane_(geometry)

    Saddle surface with normal planes in directions of principal curvatures. In geometry, a normal plane is any plane containing the normal vector of a surface at a particular point. The normal plane also refers to the plane that is perpendicular to the tangent vector of a space curve; (this plane also contains the normal vector) see Frenet ...

  4. Distance from a point to a plane - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    In either the coordinate or vector formulations, one may verify that the given point lies on the given plane by plugging the point into the equation of the plane. To see that it is the closest point to the origin on the plane, observe that p {\displaystyle \mathbf {p} } is a scalar multiple of the vector v {\displaystyle \mathbf {v} } defining ...

  5. Hesse normal form - Wikipedia

    en.wikipedia.org/wiki/Hesse_normal_form

    Distance from the origin O to the line E calculated with the Hesse normal form. Normal vector in red, line in green, point O shown in blue. In analytic geometry, the Hesse normal form (named after Otto Hesse) is an equation used to describe a line in the Euclidean plane, a plane in Euclidean space, or a hyperplane in higher dimensions.

  6. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    Illustration of the vector formulation. The equation of a line can be given in vector form: = + Here a is the position of a point on the line, and n is a unit vector in the direction of the line. Then as scalar t varies, x gives the locus of the line.

  7. Line–plane intersection - Wikipedia

    en.wikipedia.org/wiki/Line–plane_intersection

    (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it.

  8. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    This plane can also be described by the § Point–normal form and general form of the equation of a plane prescription above. A suitable normal vector is given by the cross product = (), and the point r 0 can be taken to be any of the given points p 1, p 2 or p 3 [7] (or any other point in the plane).

  9. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    On the example of a torus knot, the tangent vector T, the normal vector N, and the binormal vector B, along with the curvature κ(s), and the torsion τ(s) are displayed. At the peaks of the torsion function the rotation of the Frenet–Serret frame (T,N,B) around the tangent vector is clearly visible.