Ad
related to: free number sequence solver with solution given 0 1 9solvely.ai has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
"subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence.
Since cos(x) ≤ 1 for all x and x 3 > 1 for x > 1, we know that our solution lies between 0 and 1. A starting value of 0 will lead to an undefined result which illustrates the importance of using a starting point close to the solution. For example, with an initial guess x 0 = 0.5, the sequence given by Newton's method is:
If started with any digit d from 0 to 9 then d will remain indefinitely as the last digit of the sequence. For any d other than 1, the sequence starts as follows: d, 1d, 111d, 311d, 13211d, 111312211d, 31131122211d, … Ilan Vardi has called this sequence, starting with d = 3, the Conway sequence (sequence A006715 in the OEIS).
An integer sequence is computable if there exists an algorithm that, given n, calculates a n, for all n > 0. The set of computable integer sequences is countable.The set of all integer sequences is uncountable (with cardinality equal to that of the continuum), and so not all integer sequences are computable.
The offset is the index of the first term given. For some sequences, the offset is obvious. For example, if we list the sequence of square numbers as 0, 1, 4, 9, 16, 25 ..., the offset is 0; while if we list it as 1, 4, 9, 16, 25 ..., the offset is 1. The default offset is 0, and most sequences in the OEIS have offset of either 0 or 1.
To do so, the description of the sequence must be given a finite description; this can be done if the sequence is over the integers or rational numbers, or even over the algebraic numbers. [11] Given such an encoding for sequences s n {\displaystyle s_{n}} , the following problems can be studied:
If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.
The Motzkin number for n is also the number of positive integer sequences of length n − 1 in which the opening and ending elements are either 1 or 2, and the difference between any two consecutive elements is −1, 0 or 1. Equivalently, the Motzkin number for n is the number of positive integer sequences of length n + 1 in which the opening ...
Ad
related to: free number sequence solver with solution given 0 1 9solvely.ai has been visited by 10K+ users in the past month