Search results
Results from the WOW.Com Content Network
In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems.
Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.
The algorithm is used to factorize a number =, where is a non-trivial factor. A polynomial modulo , called () (e.g., () = (+)), is used to generate a pseudorandom sequence.It is important to note that () must be a polynomial.
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b). In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.
Wolfram Language WolframAlpha ( / ˈ w ʊ l f . r əm -/ WUULf-rəm- ) is an answer engine developed by Wolfram Research . [ 1 ] It is offered as an online service that answers factual queries by computing answers from externally sourced data.
Other early handheld calculators with symbolic algebra capabilities included the Texas Instruments TI-89 series and TI-92 calculator, and the Casio CFX-9970G. [ 2 ] The first popular computer algebra systems were muMATH , Reduce , Derive (based on muMATH), and Macsyma ; a copyleft version of Macsyma is called Maxima .
In cases where (), are expressed by polynomials or series of negative powers, exponential function, logarithmic function or , we can apply 2-point Padé approximant to (). There is a method of using this to give an approximate solution of a differential equation with high accuracy. [ 9 ]
The constant-coefficient linear recurrences which are periodic are precisely the power series coefficients of rational functions whose denominators are products of cyclotomic polynomials. In the theory of combinatorial generating functions , the denominator of a rational function determines a linear recurrence for its power series coefficients.