Search results
Results from the WOW.Com Content Network
where is the force (positive in compression), is the total surface energy of both surfaces per unit area, and is the equilibrium separation of the two atomic planes. The Bradley model applied the Lennard-Jones potential to find the force of adhesion between two rigid spheres.
Traction can also refer to the maximum tractive force between a body and a surface, as limited by available friction; when this is the case, traction is often expressed as the ratio of the maximum tractive force to the normal force and is termed the coefficient of traction (similar to coefficient of friction).
Figure 2.2. Stress vector acting on a plane with normal unit vector n. A note on the sign convention: The tetrahedron is formed by slicing a parallelepiped along an arbitrary plane n. So, the force acting on the plane n is the reaction exerted by the other half of the parallelepiped and has an opposite sign.
Assume a material element under a state of stress as shown in Figure 8 and Figure 9, with the plane of one of its sides oriented 10° with respect to the horizontal plane. Using the Mohr circle, find: The orientation of their planes of action. The maximum shear stresses and orientation of their planes of action.
They independently presented the creep versus creep force relation for a cylinder on a plane or for two cylinders in steady rolling contact using Coulomb’s dry friction law (see below). [5] These are applied to railway locomotive traction, and for understanding the hunting oscillation of railway vehicles. With respect to sliding, the ...
In the reference configuration , the outward normal to a surface element is and the traction acting on that surface (assuming it deforms like a generic vector belonging to the deformation) is leading to a force vector .
Quantitatively, the stress is expressed by the Cauchy traction vector T defined as the traction force F between adjacent parts of the material across an imaginary separating surface S, divided by the area of S. [9]: 41–50 In a fluid at rest the force is perpendicular to the surface, and is the familiar pressure.
As a consequence the three traction components that vary from point to point in a cross-section can be replaced with a set of resultant forces and resultant moments. These are the stress resultants (also called membrane forces, shear forces, and bending moment) that may be used to determine the detailed stress state in the structural element. A ...