enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Ranknullity_theorem

    Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...

  3. Quotient space (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Quotient_space_(linear...

    The first isomorphism theorem for vector spaces says that the quotient space V/ker(T) is isomorphic to the image of V in W. An immediate corollary, for finite-dimensional spaces, is the rank–nullity theorem: the dimension of V is equal to the dimension of the kernel (the nullity of T) plus the dimension of the image (the rank of T).

  4. Category:Isomorphism theorems - Wikipedia

    en.wikipedia.org/wiki/Category:Isomorphism_theorems

    These theorems are generalizations of some of the fundamental ideas from linear algebra, notably the rank–nullity theorem, and are encountered frequently in group theory. The isomorphism theorems are also fundamental in the field of K-theory , and arise in ostensibly non-algebraic situations such as functional analysis (in particular the ...

  5. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    A matrix that has rank min(m, n) is said to have full rank; otherwise, the matrix is rank deficient. Only a zero matrix has rank zero. f is injective (or "one-to-one") if and only if A has rank n (in this case, we say that A has full column rank). f is surjective (or "onto") if and only if A has rank m (in this case, we say that A has full row ...

  6. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Mathematical applications of the SVD include computing the pseudoinverse, matrix approximation, and determining the rank, range, and null space of a matrix. The SVD is also extremely useful in all areas of science, engineering, and statistics, such as signal processing, least squares fitting of data, and process control.

  7. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix. The kernel of a homomorphism is reduced to 0 (or 1) if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can be viewed as a measure of the ...

  8. Classification theorem - Wikipedia

    en.wikipedia.org/wiki/Classification_theorem

    Finite-dimensional vector space – Number of vectors in any basis of the vector space s (by dimension) Rank–nullity theorem – In linear algebra, relation between 3 dimensions (by rank and nullity)

  9. Sylvester domain - Wikipedia

    en.wikipedia.org/wiki/Sylvester_domain

    In mathematics, a Sylvester domain, named after James Joseph Sylvester by Dicks & Sontag (1978), is a ring in which Sylvester's law of nullity holds. This means that if A is an m by n matrix, and B is an n by s matrix over R, then ρ(AB) ≥ ρ(A) + ρ(B) – n. where ρ is the inner rank of a matrix.