Search results
Results from the WOW.Com Content Network
Phloem (/ ˈ f l oʊ. əm /, FLOH-əm) is the living tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as photosynthates, in particular the sugar sucrose, [1] to the rest of the plant. This transport process is called translocation. [2]
The phloem is the living portion of the vascular system of a plant, and serves to move sugars and photosynthate from source cells to sink cells. Phloem tissue is made of sieve elements and companion cells, and is surrounded by parenchyma cells. The sieve element cells work as the main player in transport of phloem sap.
Xylem and Phloem. A stem is one of two main structural axes of a vascular plant, the other being the root. It supports leaves, flowers and fruits, transports water and dissolved substances between the roots and the shoots in the xylem and phloem, engages in photosynthesis, stores nutrients, and produces new living tissue. [1]
Sieve elements are specialized cells that are important for the function of phloem, which is a highly organized tissue that transports organic compounds made during photosynthesis. Sieve elements are the major conducting cells in phloem. Conducting cells aid in transport of molecules especially for long-distance signaling.
The phloem sugar is consumed by cellular respiration or converted into starch, which is insoluble and exerts no osmotic effect. With much of the sucrose having been removed, the water exits the phloem by osmosis or is drawn by transpiration into nearby xylem vessels, lowering the turgor pressure within the phloem. [4]
A vein is made up of a vascular bundle. At the core of each bundle are clusters of two distinct types of conducting cells: Xylem Cells that bring water and minerals from the roots into the leaf. Phloem Cells that usually move sap, with dissolved sucrose (glucose to sucrose) produced by photosynthesis in the leaf, out of the leaf.
In vascular cambium, the primary phloem and xylem are produced by the apical meristem. After this initial development, secondary phloem and xylem are produced by the lateral meristem. The two are connected through a thin layer of parenchymal cells which are differentiated into the fascicular cambium.
They make up about 1% of angiosperms and are found in almost every biome. All parasitic plants develop a specialized organ called the haustorium , which penetrates the host plant, connecting them to the host vasculature – either the xylem , phloem , or both. [ 1 ]