Search results
Results from the WOW.Com Content Network
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ(r) = ρ 0 − (ρ 0 − ρ 1) r / R, and the ...
The constant of proportionality, G, in this non-relativistic formulation is the gravitational constant. Colloquially, the gravitational constant is also called "Big G", distinct from "small g" (g), which is the local gravitational field of Earth (also referred to as free-fall acceleration).
In the case of the gravitational field g, which can be shown to be conservative, [3] it is equal to the gradient in gravitational potential Φ: =. There are opposite signs between gravitational field and potential, because the potential gradient and field are opposite in direction: as the potential increases, the gravitational field strength decreases and vice versa.
In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation.Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle.
The g-force acting on a stationary object resting on the Earth's surface is 1 g (upwards) and results from the resisting reaction of the Earth's surface bearing upwards equal to an acceleration of 1 g, and is equal and opposite to gravity. The number 1 is approximate, depending on location.
It is a generalisation of the vector form, which becomes particularly useful if more than two objects are involved (such as a rocket between the Earth and the Moon). For two objects (e.g. object 2 is a rocket, object 1 the Earth), we simply write r instead of r 12 and m instead of m 2 and define the gravitational field g(r) as:
The strong equivalence principle can be tested by 1) finding orbital variations in massive bodies (Sun-Earth-Moon), 2) variations in the gravitational constant (G) depending on nearby sources of gravity or on motion, or 3) searching for a variation of Newton's gravitational constant over the life of the universe [14]: 47
For astronomical bodies other than Earth, and for short distances of fall at other than "ground" level, g in the above equations may be replaced by (+) where G is the gravitational constant, M is the mass of the astronomical body, m is the mass of the falling body, and r is the radius from the falling object to the center of the astronomical body.