enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    A given regression method will ultimately provide an estimate of , usually denoted ^ to distinguish the estimate from the true (unknown) parameter value that generated the data. Using this estimate, the researcher can then use the fitted value Y i ^ = f ( X i , β ^ ) {\displaystyle {\hat {Y_{i}}}=f(X_{i},{\hat {\beta }})} for prediction or to ...

  3. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  4. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Least-angle regression [6] is an estimation procedure for linear regression models that was developed to handle high-dimensional covariate vectors, potentially with more covariates than observations. The Theil–Sen estimator is a simple robust estimation technique that chooses the slope of the fit line to be the median of the slopes of the ...

  5. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  6. Psychological statistics - Wikipedia

    en.wikipedia.org/wiki/Psychological_statistics

    The modern test theory is based on latent trait model. Every item estimates the ability of the test taker. The ability parameter is called as theta (θ). The difficulty parameter is called b. the two important assumptions are local independence and unidimensionality. The Item Response Theory has three models.

  7. Efficiency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Efficiency_(statistics)

    In statistics, efficiency is a measure of quality of an estimator, of an experimental design, [1] or of a hypothesis testing procedure. [2] Essentially, a more efficient estimator needs fewer input data or observations than a less efficient one to achieve the Cramér–Rao bound.

  8. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis , logistic regression [ 1 ] (or logit regression ) estimates the parameters of a logistic model (the coefficients in the linear or non linear ...

  9. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    cross-validation, in which the parameters (e.g., regression weights, factor loadings) that are estimated in one subsample are applied to another subsample. Bootstrap aggregating (bagging) is a meta-algorithm based on averaging model predictions obtained from models trained on multiple bootstrap samples.