Search results
Results from the WOW.Com Content Network
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
For two circles in the Euclidean plane with radii and , and distance between their centers, the inversive distance can be defined by the formula [1] =. This formula gives: a value greater than 1 for two disjoint circles,
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
Let O 1 and O 2 be the centers of the two circles, C 1 and C 2 and let r 1 and r 2 be their radii, with r 1 > r 2; in other words, circle C 1 is defined as the larger of the two circles. Two different methods may be used to construct the external and internal tangent lines. External tangents Construction of the outer tangent
The distance between two objects that are not points is usually defined to be the smallest distance among pairs of points from the two objects. Formulas are known for computing distances between different types of objects, such as the distance from a point to a line.
Arc length is the distance between two points along a section of a curve. ... The length of the curve is given by the formula = ... Quarter circle.
The shortest distance along the surface of a sphere between two points on the surface is along the great-circle which contains the two points. The great-circle distance article gives the formula for calculating the shortest arch length on a sphere about the size of the Earth. That article includes an example of the calculation.
In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).