Search results
Results from the WOW.Com Content Network
A yaw-rate sensor is a gyroscopic device that measures a vehicle's yaw rate, its angular velocity around its vertical axis. The angle between the vehicle's heading and velocity is called its slip angle , which is related to the yaw rate.
A description of how a piezoelectric accelerometer works in theory. A piezoelectric accelerometer is an accelerometer that employs the piezoelectric effect of certain materials to measure dynamic changes in mechanical variables (e.g., acceleration, vibration, and mechanical shock).
Accelerometer; Auxanometer; Capacitive displacement sensor; Capacitive sensing; Displacement sensor (general article); Flex sensor; Free fall sensor; Gravimeter ...
Single- and multi-axis accelerometers detect the combined magnitude and direction of linear, rotational and gravitational acceleration. They can be used to provide limited motion sensing functionality. For example, a device with an accelerometer can detect rotation from vertical to horizontal state in a fixed location.
The sensor circuit is supplied with constant current. A distinguishing feature of the IEPE principle is that the power supply and the sensor signal are transmitted via one shielded wire. Most IEPE sensors work at a constant current between 2 and 20 mA. A common value is 4 mA. The higher the constant current the longer the possible cable length.
Active sensory systems receive information with or without direct contact. Teleceptive active sensory systems collect information by directing propagating energy and detecting objects using cues such as time delay and intensity of return signal. Examples include echolocation of bats and electrosensory detection of electric fish.
An accelerometer measures proper acceleration, which is the acceleration it experiences relative to freefall and is the acceleration felt by people and objects. [2] Put another way, at any point in spacetime the equivalence principle guarantees the existence of a local inertial frame, and an accelerometer measures the acceleration relative to that frame. [4]
Sensing: measuring a mechanical input by converting it to an electrical signal, e.g. a MEMS accelerometer or a pressure sensor (could also measure electrical signals as in the case of current sensors) Actuation: using an electrical signal to cause the displacement (or rotation) of a mechanical structure, e.g. a synthetic jet actuator.