Search results
Results from the WOW.Com Content Network
It was used in the world record calculations of 2.7 trillion digits of π in December 2009, [3] 10 trillion digits in October 2011, [4] [5] 22.4 trillion digits in November 2016, [6] 31.4 trillion digits in September 2018–January 2019, [7] 50 trillion digits on January 29, 2020, [8] 62.8 trillion digits on August 14, 2021, [9] 100 trillion ...
The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...
This algorithm computes π without requiring custom data types having thousands or even millions of digits. The method calculates the nth digit without calculating the first n − 1 digits and can use small, efficient data types. Fabrice Bellard found a variant of BBP, Bellard's formula, which is faster.
The same approach can be used to calculate digits of the binary expansion of ln(2) starting from an arbitrary nth position. The number of terms in the "head" sum increases linearly with n , but the complexity of each term only increases with the logarithm of n if an efficient method of modular exponentiation is used.
Start by setting [4] = = = + Then iterate + = + + = (+) + + = (+ +) + + + Then p k converges quadratically to π; that is, each iteration approximately doubles the number of correct digits.The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result.
Pages in category "Pi algorithms" The following 17 pages are in this category, out of 17 total. This list may not reflect recent changes. A. ... Code of Conduct;
Machin's particular formula was used well into the computer era for calculating record numbers of digits of π, [39] but more recently other similar formulae have been used as well. For instance, Shanks and his team used the following Machin-like formula in 1961 to compute the first 100,000 digits of π : [ 39 ]
PiHex was a distributed computing project organized by Colin Percival to calculate specific bits of π. [ 1 ] 1,246 contributors [ 2 ] used idle time slices on almost two thousand computers [ citation needed ] to make its calculations.