Search results
Results from the WOW.Com Content Network
Symmetric and antisymmetric relations. Partial and total orders are antisymmetric by definition. A relation can be both symmetric and antisymmetric (in this case, it must be coreflexive), and there are relations which are neither symmetric nor antisymmetric (for example, the "preys on" relation on biological species).
In mathematical physics, where symmetry is of central importance, or even just in multilinear algebra these operations are mostly (multilinear with respect to some vector structures and then) called antisymmetric operations, and when they are not already of arity greater than two, extended in an associative setting to cover more than two arguments.
Antisymmetric relation in mathematics; Skew-symmetric graph; Self-complementary graph; In mathematics, especially linear algebra, and in theoretical physics, the adjective antisymmetric (or skew-symmetric) is used for matrices, tensors, and other objects that change sign if an appropriate operation (e.g. matrix transposition) is performed. See:
There is actually an exception to this rule, which will be discussed later. On the other hand, it can be shown that the symmetric and antisymmetric states are in a sense special, by examining a particular symmetry of the multiple-particle states known as exchange symmetry. Define a linear operator P, called the exchange operator. When it acts ...
Symmetry in biology refers to the symmetry observed in organisms, including plants, animals, fungi, and bacteria. External symmetry can be easily seen by just looking at an organism. For example, the face of a human being has a plane of symmetry down its centre, or a pine cone displays a clear symmetrical spiral pattern.
The converse is not true: most directed graphs are neither reflexive nor transitive. A preorder that is antisymmetric no longer has cycles; it is a partial order, and corresponds to a directed acyclic graph. A preorder that is symmetric is an equivalence relation; it can be thought of as having lost the direction markers on the edges of the graph.
For example, in a 3/4 inch (19mm) thick steel plate having longitudinal and shear velocities of 5890 m/s and 3260 m/s respectively, the nascent frequencies of the antisymmetric modes A 1 and A 2 are 86 kHz and 310 kHz respectively, while the nascent frequencies of the symmetric modes S 1, S 2 and S 3 are 155 kHz, 172 kHz and 343 kHz respectively.
Such a state is either completely symmetric under exchange of all identical bosons or completely antisymmetric under exchange of all identical fermions of the system. To do so for fermions, for example, the antisymmetrizer builds such a completely antisymmetric state. In 2 dimensions, the adiabatic exchange of particles is not necessarily possible.