enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    Indeed, multiplying each equation of the second auxiliary system by , adding with the corresponding equation of the first auxiliary system and using the representation = +, we immediately see that equations number through of the original system are satisfied; it only remains to satisfy equation number .

  3. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    The simplest method for solving a system of linear equations is to repeatedly eliminate variables. This method can be described as follows: In the first equation, solve for one of the variables in terms of the others. Substitute this expression into the remaining equations. This yields a system of equations with one fewer equation and unknown.

  4. Overdetermined system - Wikipedia

    en.wikipedia.org/wiki/Overdetermined_system

    The concept can also be applied to more general systems of equations, such as systems of polynomial equations or partial differential equations. In the case of the systems of polynomial equations, it may happen that an overdetermined system has a solution, but that no one equation is a consequence of the others and that, when removing any ...

  5. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...

  6. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [2] [3] They are also used for the solution of linear equations for linear least-squares problems [4] and also for systems of linear inequalities, such as those arising in linear programming.

  7. Governing equation - Wikipedia

    en.wikipedia.org/wiki/Governing_equation

    A governing equation may also be a state equation, an equation describing the state of the system, and thus actually be a constitutive equation that has "stepped up the ranks" because the model in question was not meant to include a time-dependent term in the equation.

  8. Solver - Wikipedia

    en.wikipedia.org/wiki/Solver

    In the case of a single equation, the "solver" is more appropriately called a root-finding algorithm. Systems of linear equations. Nonlinear systems. Systems of polynomial equations, which are a special case of non linear systems, better solved by specific solvers. Linear and non-linear optimisation problems; Systems of ordinary differential ...

  9. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    This exponential behavior makes solving polynomial systems difficult and explains why there are few solvers that are able to automatically solve systems with Bézout's bound higher than, say, 25 (three equations of degree 3 or five equations of degree 2 are beyond this bound). [citation needed]