enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 1 − 2 + 3 − 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%E2%88%92_2_%2B_3_%E2%88...

    The idea becomes clearer by considering the general series 1 − 2x + 3x 2 − 4x 3 + 5x 4 − 6x 5 + &c. that arises while expanding the expression 1 ⁄ (1+x) 2, which this series is indeed equal to after we set x = 1.

  3. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...

  4. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . Many writers begin the sequence with 0 and 1, although some authors start it from 1 and 1 [1][2] and some (as did Fibonacci) from 1 ...

  5. Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Grandi's_series

    Grandi's series. In mathematics, the infinite series 11 + 11 + ⋯, also written. is sometimes called Grandi's series, after Italian mathematician, philosopher, and priest Guido Grandi, who gave a memorable treatment of the series in 1703. It is a divergent series, meaning that the sequence of partial sums of the series does not converge.

  6. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...

  7. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, it is possible to expand the polynomial (x + y) n into a sum involving terms of the form ax b y c, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending ...

  8. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    1/2 + 1/4 + 1/8 + 1/16 + ⋯. First six summands drawn as portions of a square. The geometric series on the real line. In mathematics, the infinite series ⁠ 1 2 ⁠ + ⁠ 1 4 ⁠ + ⁠ 1 8 ⁠ + ⁠ 1 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation ...

  9. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    The only known powers of 2 with all digits even are 2^1 = 2, 2^2 = 4, 2^3 = 8, 2^6 = 64 and 2^11 = 2048. [11] The first 3 powers of 2 with all but last digit odd is 2^4 = 16, 2^5 = 32 and 2^9 = 512. The next such power of 2 of form 2^n should have n of at least 6 digits.