Search results
Results from the WOW.Com Content Network
As above, for e = 0, the graph is a circle, for 0 < e < 1 the graph is an ellipse, for e = 1 a parabola, and for e > 1 a hyperbola. The polar form of the equation of a conic is often used in dynamics; for instance, determining the orbits of objects revolving about the Sun. [20]
A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ...
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
Then for the ellipse case of AC > (B/2) 2, the ellipse is real if the sign of K equals the sign of (A + C) (that is, the sign of each of A and C), imaginary if they have opposite signs, and a degenerate point ellipse if K = 0. In the hyperbola case of AC < (B/2) 2, the hyperbola is degenerate if and only if K = 0.
For example, to study the equations of ellipses and hyperbolas, the foci are usually located on one of the axes and are situated symmetrically with respect to the origin. If the curve (hyperbola, parabola , ellipse, etc.) is not situated conveniently with respect to the axes, the coordinate system should be changed to place the curve at a ...
Ellipse; Parabola; Hyperbola. Unit hyperbola; Degree 3. Cubic plane curves include Cubic parabola; Folium of Descartes; Cissoid of Diocles; Conchoid of de Sluze;
An elliptic curve is not an ellipse in the sense of a projective conic, which has genus zero: see elliptic integral for the origin of the term. However, there is a natural representation of real elliptic curves with shape invariant j ≥ 1 as ellipses in the hyperbolic plane H 2 {\displaystyle \mathbb {H} ^{2}} .