enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    This sum is called a Chebyshev series or a Chebyshev expansion. Since a Chebyshev series is related to a Fourier cosine series through a change of variables, all of the theorems, identities, etc. that apply to Fourier series have a Chebyshev counterpart. [16] These attributes include: The Chebyshev polynomials form a complete orthogonal system.

  3. Approximation theory - Wikipedia

    en.wikipedia.org/wiki/Approximation_theory

    One can obtain polynomials very close to the optimal one by expanding the given function in terms of Chebyshev polynomials and then cutting off the expansion at the desired degree. This is similar to the Fourier analysis of the function, using the Chebyshev polynomials instead of the usual trigonometric functions.

  4. Chebyshev–Gauss quadrature - Wikipedia

    en.wikipedia.org/wiki/Chebyshev–Gauss_quadrature

    In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind:

  5. Orthogonal polynomials - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_polynomials

    The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases. The field of orthogonal polynomials developed in the late 19th century from a study of continued fractions by P. L. Chebyshev and was pursued by A. A. Markov and T. J. Stieltjes.

  6. Clenshaw–Curtis quadrature - Wikipedia

    en.wikipedia.org/wiki/Clenshaw–Curtis_quadrature

    Clenshaw–Curtis quadrature and Fejér quadrature are methods for numerical integration, or "quadrature", that are based on an expansion of the integrand in terms of Chebyshev polynomials. Equivalently, they employ a change of variables x = cos ⁡ θ {\displaystyle x=\cos \theta } and use a discrete cosine transform (DCT) approximation for ...

  7. Classical orthogonal polynomials - Wikipedia

    en.wikipedia.org/wiki/Classical_orthogonal...

    Because of this, expansion of functions in terms of Chebyshev polynomials is sometimes used for polynomial approximations in computer math libraries. Some authors use versions of these polynomials that have been shifted so that the interval of orthogonality is [0, 1] or [−2, 2].

  8. Chebyshev function - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_function

    The Chebyshev functions, especially the second one ψ (x), are often used in proofs related to prime numbers, because it is typically simpler to work with them than with the prime-counting function, π (x) (see the exact formula below.) Both Chebyshev functions are asymptotic to x, a statement equivalent to the prime number theorem.

  9. Discrete Chebyshev transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Chebyshev_transform

    In applied mathematics, a discrete Chebyshev transform (DCT) is an analog of the discrete Fourier transform for a function of a real interval, converting in either direction between function values at a set of Chebyshev nodes and coefficients of a function in Chebyshev polynomial basis. Like the Chebyshev polynomials, it is named after Pafnuty ...