Search results
Results from the WOW.Com Content Network
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The likelihood estimate needs to be as large as possible; because it's a lower bound, getting closer improves the approximation of the log likelihood. By substituting in the factorized version of , (), parameterized over the hidden nodes as above, is simply the negative relative entropy between and plus other terms independent of if is defined as
Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning.They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as ...
Malliavin introduced Malliavin calculus to provide a stochastic proof that Hörmander's condition implies the existence of a density for the solution of a stochastic differential equation; Hörmander's original proof was based on the theory of partial differential equations. His calculus enabled Malliavin to prove regularity bounds for the ...
The main flavours of stochastic calculus are the Itô calculus and its variational relative the Malliavin calculus. For technical reasons the Itô integral is the most useful for general classes of processes, but the related Stratonovich integral is frequently useful in problem formulation (particularly in engineering disciplines). The ...
Many variational autoencoders applications and extensions have been used to adapt the architecture to other domains and improve its performance. β {\displaystyle \beta } -VAE is an implementation with a weighted Kullback–Leibler divergence term to automatically discover and interpret factorised latent representations.
t-distributed stochastic neighbor embedding (t-SNE) is a statistical method for visualizing high-dimensional data by giving each datapoint a location in a two or three-dimensional map. It is based on Stochastic Neighbor Embedding originally developed by Geoffrey Hinton and Sam Roweis, [ 1 ] where Laurens van der Maaten and Hinton proposed the t ...
The calculus of variations began with the work of Isaac Newton, such as with Newton's minimal resistance problem, which he formulated and solved in 1685, and later published in his Principia in 1687, [2] which was the first problem in the field to be formulated and correctly solved, [2] and was also one of the most difficult problems tackled by variational methods prior to the twentieth century.