enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle.Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola.

  3. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    Many other trigonometric functions are also defined in math.h, such as for cosine, arc sine, and hyperbolic sine (sinh). Similarly, Python defines math.sin(x) and math.cos(x) within the built-in math module. Complex sine and cosine functions are also available within the cmath module, e.g. cmath.sin(z).

  4. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    Graphs of the inverse hyperbolic functions The hyperbolic functions sinh, cosh, and tanh with respect to a unit hyperbola are analogous to circular functions sin, cos, tan with respect to a unit circle. The argument to the hyperbolic functions is a hyperbolic angle measure.

  5. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

  6. Trigonometric interpolation - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_interpolation

    The sine-only expansion for equally spaced points, corresponding to odd symmetry, was solved by Joseph Louis Lagrange in 1762, for which the solution is a discrete sine transform. The full cosine and sine interpolating polynomial, which gives rise to the DFT, was solved by Carl Friedrich Gauss in unpublished work around 1805, at which point he ...

  7. Sinc function - Wikipedia

    en.wikipedia.org/wiki/Sinc_function

    The product of 1-D sinc functions readily provides a multivariate sinc function for the square Cartesian grid : sinc C (x, y) = sinc(x) sinc(y), whose Fourier transform is the indicator function of a square in the frequency space (i.e., the brick wall defined in 2-D space).

  8. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    This means that the inverse function will only give values in the domain of the function, but restricted to a single period. Hence, the range of the inverse function is only half a full circle. Note that one can also use r = x 2 + y 2 θ ′ = 2 arctan ⁡ y x + r {\displaystyle {\begin{aligned}r&={\sqrt {x^{2}+y^{2}}}\\\theta '&=2\arctan ...

  9. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/.../Inverse_trigonometric_functions

    [1] [10] Another precarious convention used by a small number of authors is to use an uppercase first letter, along with a “ −1 ” superscript: Sin −1 (x), Cos −1 (x), Tan −1 (x), etc. [11] Although it is intended to avoid confusion with the reciprocal, which should be represented by sin −1 (x), cos −1 (x), etc., or, better, by ...