Search results
Results from the WOW.Com Content Network
ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure. From Bernoulli's law, dynamic pressure is given by
For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. [2] Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.
The pressure and temperature of the gas are directly proportional: As temperature increases, the pressure of the propane gas increases by the same factor. A simple consequence of this proportionality is that on a hot summer day, the propane tank pressure will be elevated, and thus propane tanks must be rated to withstand such increases in pressure.
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, density, speed and height. Bernoulli's principle states that an increase in the speed of a parcel of fluid occurs simultaneously with a decrease in either the pressure or the height above a datum. [1]:
Liquid density calculator [permanent dead link ] Select a liquid from the list and calculate density as a function of temperature. Gas density calculator [permanent dead link ] Calculate density of a gas for as a function of temperature and pressure. Densities of various materials.
The attractive forces, which are proportional to the density , tend to retard the collisions that molecules have with the container walls and lower the pressure. The number of collisions that are so affected is also proportional to the density.
Here we assumed the local pressure gradient is not too great to have any compressibility effects. Though locally we ignored the effects of pressure variation due to density variation, over long distances these effects are taken into account. Since μ is independent of pressure, the above equation can be integrated over the length L to give
Specific volume is inversely proportional to density. If the density of a substance doubles, its specific volume, as expressed in the same base units, is cut in half. If the density drops to 1/10 its former value, the specific volume, as expressed in the same base units, increases by a factor of 10.