Search results
Results from the WOW.Com Content Network
For any point, the abscissa is the first value (x coordinate), and the ordinate is the second value (y coordinate). In mathematics, the abscissa (/ æ b ˈ s ɪ s. ə /; plural abscissae or abscissas) and the ordinate are respectively the first and second coordinate of a point in a Cartesian coordinate system: [1] [2]
Each axis is usually named after the coordinate which is measured along it; so one says the x-axis, the y-axis, the t-axis, etc. Another common convention for coordinate naming is to use subscripts, as (x 1, x 2, ..., x n) for the n coordinates in an n-dimensional space, especially when n is greater than 3 or unspecified.
For example, in the plane, if Cartesian coordinates (x, y) and polar coordinates (r, θ) have the same origin, and the polar axis is the positive x axis, then the coordinate transformation from polar to Cartesian coordinates is given by x = r cosθ and y = r sinθ.
When the abscissa and ordinate are on the same scale, the identity line forms a 45° angle with the abscissa, and is thus also, informally, called the 45° line. [5] The line is often used as a reference in a 2-dimensional scatter plot comparing two sets of data expected to be identical under ideal conditions. When the corresponding data points ...
Here, time increases from top to bottom, i.e., vertically, along the ordinate, or y-axis; while the oscillation contours are oriented from left to right, horizontally, on the abscissa, or x-axis. Thus, over calendar time from April to September, the movements of any specific contour-value are depicted as from west to east—that is, from 20E ...
The four quadrants of a Cartesian coordinate system. The axes of a two-dimensional Cartesian system divide the plane into four infinite regions, called quadrants, each bounded by two half-axes.
Get answers to your AOL Mail, login, Desktop Gold, AOL app, password and subscription questions. Find the support options to contact customer care by email, chat, or phone number.
An axis of rotation is set up that is perpendicular to the plane of motion of the particle, and passing through this origin. Then, at the selected moment t, the rate of rotation of the co-rotating frame Ω is made to match the rate of rotation of the particle about this axis, dφ/dt. Next, the terms in the acceleration in the inertial frame are ...