Search results
Results from the WOW.Com Content Network
The forerunner of this book appeared under the title Formal Languages and Their Relation to Automata in 1968. Forming a basis both for the creation of courses on the topic, as well as for further research, that book shaped the field of automata theory for over a decade, cf. (Hopcroft 1989).
Ogden's lemma is often stated in the following form, which can be obtained by "forgetting about" the grammar, and concentrating on the language itself: If a language L is context-free, then there exists some number (where p may or may not be a pumping length) such that for any string s of length at least p in L and every way of "marking" p or more of the positions in s, s can be written as
Automata theory is closely related to formal language theory. In this context, automata are used as finite representations of formal languages that may be infinite. Automata are often classified by the class of formal languages they can recognize, as in the Chomsky hierarchy, which describes a nesting relationship between major classes of automata.
Mapping [note 2] each equivalence E to the corresponding quotient automaton language L(A a,b,c,d / E) obtains the partially ordered set shown in the picture. Each node's language is denoted by a regular expression. The language may be recognized by quotient automata w.r.t. different equivalence relations, all of which are shown below the node.
[2] [3] In this view, language is regarded as arising from a mathematical relationship between meaning and form. The formal description of language was further developed by linguists including J. R. Firth and Simon Dik, giving rise to modern grammatical frameworks such as systemic functional linguistics and functional discourse grammar.
In the theory of computation and automata theory, the powerset construction or subset construction is a standard method for converting a nondeterministic finite automaton (NFA) into a deterministic finite automaton (DFA) which recognizes the same formal language. It is important in theory because it establishes that NFAs, despite their ...
In computer science, in particular in formal language theory, the pumping lemma for context-free languages, also known as the Bar-Hillel lemma, [1] is a lemma that gives a property shared by all context-free languages and generalizes the pumping lemma for regular languages.
Hasse diagram of some classes of quantitative automata, ordered by expressiveness. [1]: Fig.1 In theoretical computer science and formal language theory, a weighted automaton or weighted finite-state machine is a generalization of a finite-state machine in which the edges have weights, for example real numbers or integers.