Search results
Results from the WOW.Com Content Network
Automata theory is closely related to formal language theory. In this context, automata are used as finite representations of formal languages that may be infinite. Automata are often classified by the class of formal languages they can recognize, as in the Chomsky hierarchy, which describes a nesting relationship between major classes of automata.
Ogden's lemma is often stated in the following form, which can be obtained by "forgetting about" the grammar, and concentrating on the language itself: If a language L is context-free, then there exists some number (where p may or may not be a pumping length) such that for any string s of length at least p in L and every way of "marking" p or more of the positions in s, s can be written as
Mapping [note 2] each equivalence E to the corresponding quotient automaton language L(A a,b,c,d / E) obtains the partially ordered set shown in the picture. Each node's language is denoted by a regular expression. The language may be recognized by quotient automata w.r.t. different equivalence relations, all of which are shown below the node.
The forerunner of this book appeared under the title Formal Languages and Their Relation to Automata in 1968. Forming a basis both for the creation of courses on the topic, as well as for further research, that book shaped the field of automata theory for over a decade, cf. (Hopcroft 1989).
To convert a grammar to Chomsky normal form, a sequence of simple transformations is applied in a certain order; this is described in most textbooks on automata theory. [4]: 87–94 [5] [6] [7] The presentation here follows Hopcroft, Ullman (1979), but is adapted to use the transformation names from Lange, Leiß (2009).
[2] [3] In this view, language is regarded as arising from a mathematical relationship between meaning and form. The formal description of language was further developed by linguists including J. R. Firth and Simon Dik, giving rise to modern grammatical frameworks such as systemic functional linguistics and functional discourse grammar.
A formal language is p-regular (also: a pure-group language) if it is accepted by a permutation automaton. For example, the set of strings of even length forms a p-regular language: it may be accepted by a permutation automaton with two states in which every transition replaces one state by the other.
A DFA for that language has at least 16 states. In automata theory, a finite-state machine is called a deterministic finite automaton (DFA), if each of its transitions is uniquely determined by its source state and input symbol, and; reading an input symbol is required for each state transition.