enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    Hoyt distribution, the pdf of the vector length of a bivariate normally distributed vector (correlated and centered) Complex normal distribution, an application of bivariate normal distribution; Copula, for the definition of the Gaussian or normal copula model.

  3. File:Gaussian and Logistic Normal pdfs.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Gaussian_and_Logistic...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  4. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    If the points in the joint probability distribution of X and Y that receive positive probability tend to fall along a line of positive (or negative) slope, ρ XY is near +1 (or −1). If ρ XY equals +1 or −1, it can be shown that the points in the joint probability distribution that receive positive probability fall exactly along a straight ...

  5. Isserlis' theorem - Wikipedia

    en.wikipedia.org/wiki/Isserlis'_theorem

    Download QR code; Print/export ... An equivalent formulation of the Wick's probability formula is the Gaussian integration by parts ... is the joint cumulant of ...

  6. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    All these extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists. The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector X ∈ R k is multivariate-normally distributed if any linear combination of its components Σ k j=1 a j X j has a (univariate) normal ...

  7. Complex normal distribution - Wikipedia

    en.wikipedia.org/wiki/Complex_normal_distribution

    The standard complex normal random variable or standard complex Gaussian random variable is a complex random variable whose real and imaginary parts are independent normally distributed random variables with mean zero and variance /. [3]: p. 494 [4]: pp. 501 Formally,

  8. Kosambi–Karhunen–Loève theorem - Wikipedia

    en.wikipedia.org/wiki/Kosambi–Karhunen–Loève...

    Since the limit in the mean of jointly Gaussian random variables is jointly Gaussian, and jointly Gaussian random (centered) variables are independent if and only if they are orthogonal, we can also conclude: Theorem. The variables Z i have a joint Gaussian distribution and are stochastically independent if the original process {X t} t is Gaussian.

  9. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    Inference of continuous values with a Gaussian process prior is known as Gaussian process regression, or kriging; extending Gaussian process regression to multiple target variables is known as cokriging. [26] Gaussian processes are thus useful as a powerful non-linear multivariate interpolation tool. Kriging is also used to extend Gaussian ...