Search results
Results from the WOW.Com Content Network
Harvard architecture. The Harvard architecture is a computer architecture with separate storage [1] and signal pathways for instructions and data.It is often contrasted with the von Neumann architecture, where program instructions and data share the same memory and pathways.
There is a single address space for instructions and data, providing the von Neumann model, but the CPU fetches instructions from the instruction cache and fetches data from the data cache. [ citation needed ] Most programmers never need to be aware of the fact that the processor core implements a (modified) Harvard architecture, although they ...
The number of operands is one of the factors that may give an indication about the performance of the instruction set. A three-operand architecture (2-in, 1-out) will allow A := B + C to be computed in one instruction ADD B, C, A A two-operand architecture (1-in, 1-in-and-out) will allow A := A + B to be computed in one instruction ADD B, A
When a processor or DMA-enabled device needs to read or write to a memory location, it specifies that memory location on the address bus (the value to be read or written is sent on the data bus). The width of the address bus determines the amount of memory a system can address. For example, a system with a 32-bit address bus can address 2 32 ...
Note that this is more or less the same as base-plus-offset addressing mode, except that the offset in this case is large enough to address any memory location. Example 1: Within a subroutine, a programmer may define a string as a local constant or a static variable. The address of the string is stored in the literal address in the instruction.
The address generation unit (AGU), sometimes also called address computation unit (ACU), [1] is an execution unit inside central processing units (CPUs) that calculates addresses used by the CPU to access main memory. By having address calculations handled by separate circuitry that operates in parallel with the rest of the CPU, the number of ...
The instruction unit (I-unit or IU), also called, e.g., instruction fetch unit (IFU), instruction issue unit (IIU), instruction sequencing unit (ISU), in a central processing unit (CPU) is responsible for organizing program instructions to be fetched from memory, and executed, in an appropriate order, and for forwarding them to an execution unit (E-unit or EU).
When reading from memory, data addressed by MAR is fed into the MDR (memory data register) and then used by the CPU. When writing to memory, the CPU writes data from MDR to the memory location whose address is stored in MAR. MAR, which is found inside the CPU, goes either to the RAM (random-access memory) or cache.