Search results
Results from the WOW.Com Content Network
Formally, a rational map: between two varieties is an equivalence class of pairs (,) in which is a morphism of varieties from a non-empty open set to , and two such pairs (,) and (′ ′, ′) are considered equivalent if and ′ ′ coincide on the intersection ′ (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).
If X is a smooth complete curve (for example, P 1) and if f is a rational map from X to a projective space P m, then f is a regular map X → P m. [5] In particular, when X is a smooth complete curve, any rational function on X may be viewed as a morphism X → P 1 and, conversely, such a morphism as a rational function on X.
A birational map from X to Y is a rational map f : X ⇢ Y such that there is a rational map Y ⇢ X inverse to f.A birational map induces an isomorphism from a nonempty open subset of X to a nonempty open subset of Y, and vice versa: an isomorphism between nonempty open subsets of X, Y by definition gives a birational map f : X ⇢ Y.
For example, if : is a dominant rational map between smooth projective varieties of the same dimension, then the pullback of a big line bundle on Y is big on X. (At first sight, the pullback is only a line bundle on the open subset of X where f is a morphism, but this extends uniquely to a line bundle on all of X .)
Concept mapping and mind mapping software is used to create diagrams of relationships between concepts, ideas, or other pieces of information. It has been suggested that the mind mapping technique can improve learning and study efficiency up to 15% over conventional note-taking. [1]
In mathematics, in the representation theory of algebraic groups, a linear representation of an algebraic group is said to be rational if, viewed as a map from the group to the general linear group, it is a rational map of algebraic varieties. Finite direct sums and products of rational representations are rational.
For example, Spec k[x] and Spec k(x) and have the same function field (namely, k(x)) but there is no rational map from the former to the latter. However, it is true that any inclusion of function fields of algebraic varieties induces a dominant rational map (see morphism of algebraic varieties#Properties .)
The image of the 1-canonical map is called a canonical curve. A canonical curve of genus g always sits in a projective space of dimension g − 1. [3] When C is a hyperelliptic curve, the canonical curve is a rational normal curve, and C a double cover of its canonical curve. For example if P is a polynomial of degree 6 (without repeated roots ...