enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Georg Cantor published this proof in 1891, [1] [2]: 20– [3] but it was not his first proof of the uncountability of the real numbers, which appeared in 1874. [ 4 ] [ 5 ] However, it demonstrates a general technique that has since been used in a wide range of proofs, [ 6 ] including the first of Gödel's incompleteness theorems [ 2 ] and ...

  3. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century.

  4. Cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Cardinal_assignment

    The goal of a cardinal assignment is to assign to every set A a specific, unique set that is only dependent on the cardinality of A. This is in accordance with Cantor 's original vision of cardinals: to take a set and abstract its elements into canonical "units" and collect these units into another set, such that the only thing special about ...

  5. Cardinality of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinality_of_the_continuum

    Symbolically, if the cardinality of is denoted as , the cardinality of the continuum is c = 2 ℵ 0 > ℵ 0 . {\displaystyle {\mathfrak {c}}=2^{\aleph _{0}}>\aleph _{0}.} This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities.

  6. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    The best known example of an uncountable set is the set ⁠ ⁠ of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers ⁠ ⁠ (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...

  7. Cantor's first set theory article - Wikipedia

    en.wikipedia.org/wiki/Cantor's_first_set_theory...

    The presentation of the non-constructive proof without mentioning Cantor's constructive proof appears in some books that were quite successful as measured by the length of time new editions or reprints appeared—for example: Oskar Perron's Irrationalzahlen (1921; 1960, 4th edition), Eric Temple Bell's Men of Mathematics (1937; still being ...

  8. Transfinite number - Wikipedia

    en.wikipedia.org/wiki/Transfinite_number

    Any finite natural number can be used in at least two ways: as an ordinal and as a cardinal. Cardinal numbers specify the size of sets (e.g., a bag of five marbles), whereas ordinal numbers specify the order of a member within an ordered set [9] (e.g., "the third man from the left" or "the twenty-seventh day of January").

  9. Controversy over Cantor's theory - Wikipedia

    en.wikipedia.org/wiki/Controversy_over_Cantor's...

    [2] His new proof uses his diagonal argument to prove that there exists an infinite set with a larger number of elements (or greater cardinality) than the set of natural numbers N = {1, 2, 3, ...}. This larger set consists of the elements ( x 1 , x 2 , x 3 , ...), where each x n is either m or w . [ 3 ]