Search results
Results from the WOW.Com Content Network
The lower limit topology is finer (has more open sets) than the standard topology on the real numbers (which is generated by the open intervals). The reason is that every open interval can be written as a (countably infinite) union of half-open intervals. For any real and , the interval [,) is clopen in (i.e., both open and closed).
In summary, a set of the real numbers is an interval, if and only if it is an open interval, a closed interval, or a half-open interval. [4] [5] A degenerate interval is any set consisting of a single real number (i.e., an interval of the form [a, a]). [6] Some authors include the empty set in this definition.
The usual example of this is the Sorgenfrey plane, which is the product of the real line under the half-open interval topology with itself. Open sets in the Sorgenfrey plane are unions of half-open rectangles that include the south and west edges and omit the north and east edges, including the northwest, northeast, and southeast corners.
If is endowed with its usual Euclidean topology then the derived set of the half-open interval [,) is the closed interval [,]. Consider R {\displaystyle \mathbb {R} } with the topology (open sets) consisting of the empty set and any subset of R {\displaystyle \mathbb {R} } that contains 1.
While there are many Borel measures μ, the choice of Borel measure that assigns ((,]) = for every half-open interval (,] is sometimes called "the" Borel measure on . This measure turns out to be the restriction to the Borel σ-algebra of the Lebesgue measure λ {\displaystyle \lambda } , which is a complete measure and is defined on the ...
Half-open may refer to: Half-open file in chess; Half-open vowel, a class of vowel sound; ... Half-open interval, an interval containing only one of its endpoints;
The half-open intervals [a, b) and (a, b] are defined similarly. Whenever a ≤ b does not hold, all these intervals are empty. Every interval is a convex set, but the converse does not hold; for example, in the poset of divisors of 120, ordered by divisibility (see Fig. 7b), the set {1, 2, 4, 5, 8} is convex, but not an interval.
A classical example is to define a content on all half open intervals [,) by setting their content to the length of the intervals, that is, ([,)) =. One can further show that this content is actually σ-additive and thus defines a pre-measure on the semiring of all half-open intervals.