enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    The eccentricity of Earth's orbit is currently about 0.016 7; its orbit is nearly circular. Neptune's and Venus's have even lower eccentricities of 0.008 6 and 0.006 8 respectively, the latter being the least orbital eccentricity of any planet in the Solar System.

  3. Earth's orbit - Wikipedia

    en.wikipedia.org/wiki/Earth's_orbit

    Ignoring the influence of other Solar System bodies, Earth's orbit, also called Earth's revolution, is an ellipse with the Earth–Sun barycenter as one focus with a current eccentricity of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun (relative to the size of the orbit).

  4. List of orbits - Wikipedia

    en.wikipedia.org/wiki/List_of_orbits

    Geosynchronous orbit (GSO): An orbit around the Earth with a period equal to one sidereal day, which is Earth's average rotational period of 23 hours, 56 minutes, 4.091 seconds. For a nearly circular orbit, this implies an altitude of approximately 35,786 kilometers (22,236 mi).

  5. Milankovitch cycles - Wikipedia

    en.wikipedia.org/wiki/Milankovitch_cycles

    The relative increase in solar irradiation at closest approach to the Sun compared to the irradiation at the furthest distance is slightly larger than four times the eccentricity. For Earth's current orbital eccentricity, incoming solar radiation varies by about 6.8%, while the distance from the Sun currently varies by only 3.4% (5.1 million km ...

  6. Position of the Sun - Wikipedia

    en.wikipedia.org/wiki/Position_of_the_Sun

    The number 2, in (N-2), is the approximate number of days after January 1 to the Earth's perihelion. The number 0.0167 is the current value of the eccentricity of the Earth's orbit. The eccentricity varies very slowly over time, but for dates fairly close to the present, it can be considered to be constant.

  7. Orbital inclination - Wikipedia

    en.wikipedia.org/wiki/Orbital_inclination

    For a satellite orbiting the Earth directly above the Equator, the plane of the satellite's orbit is the same as the Earth's equatorial plane, and the satellite's orbital inclination is 0°. The general case for a circular orbit is that it is tilted, spending half an orbit over the northern hemisphere and half over the southern.

  8. Equation of time - Wikipedia

    en.wikipedia.org/wiki/Equation_of_time

    B is the angle the Earth moves from the solstice to date D, including a first-order correction for the Earth's orbital eccentricity, 0.0167 . The number 3 is the approximate number of days from 31 December to the current date of the Earth's perihelion. This expression for B can be simplified by combining constants to:

  9. Axial precession - Wikipedia

    en.wikipedia.org/wiki/Axial_precession

    The season dates are those in the north. The tilt of fictitious Earth's axis and the eccentricity of its orbit are exaggerated. Approximate estimates. Effects of weak planetary precession on the stages shown are ignored. The precession of the Earth's axis has a number of observable effects.