Search results
Results from the WOW.Com Content Network
In electrical circuits, reactance is the opposition presented to alternating current by inductance and capacitance. [1] Along with resistance, it is one of two elements of impedance; however, while both elements involve transfer of electrical energy, no dissipation of electrical energy as heat occurs in reactance; instead, the reactance stores energy until a quarter-cycle later when the energy ...
Inductive reactance = increases as frequency increases, while capacitive reactance = decreases with increase in frequency (defined here as a positive number). At one particular frequency, these two reactances are equal and the voltages across them are equal and opposite in sign; that frequency is called the resonant frequency f 0 for the given ...
The reactance and susceptance are only reciprocals in the absence of ... A more general definition of capacitance, encompassing electrostatic formula, is: [6 ...
By changing the value of the example in the diagram by a capacitor with a value of 330 nF, a current of approximately 20 mA can be provided, as the reactance of the 330 nF capacitor at 50 Hz calculates to = and applying Ohm's law, that limits the current to . This way up to 48 white LEDs in series can be powered (for example, 3.1 V/20 mA/20000 ...
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
For a simplified model of a capacitor as an ideal capacitor in series with an equivalent series resistance, the capacitor's quality factor (or Q) is the ratio of the magnitude of its capacitive reactance to its resistance at a given frequency:
A Maxwell bridge is a modification to a Wheatstone bridge used to measure an unknown inductance (usually of low Q value) in terms of calibrated resistance and inductance or resistance and capacitance. [1] When the calibrated components are a parallel resistor and capacitor, the bridge is known as a Maxwell bridge.
C is the capacitance; X C is the capacitive reactance; and; R C is the series resistance of the capacitor. In general, the Q of a resonator involving a series combination of a capacitor and an inductor can be determined from the Q values of the components, whether their losses come from series resistance or otherwise: [23]