Search results
Results from the WOW.Com Content Network
Typical short-exposure negative image of a binary star (Zeta Boötis in this case) as seen through atmospheric seeing. Each star should appear as a single Airy pattern, but the atmosphere causes the images of the two stars to break up into two patterns of speckles (one pattern above left, the other below right). The speckles are a little ...
The Pickering scale is a scale of rating astronomical seeing, the blurring of images caused by atmospheric turbulence. [1] [2] The scale was developed by William H. Pickering (1858–1938) of Harvard College Observatory, using a 5" (13 cm) refractor. [3] [4] Seeing of 1 to 3 is considered very poor, 4 to 5 is poor, 6 to 7 is good, and 8 to 10 ...
Typical short-exposure image of a binary star as seen through atmospheric turbulence. Each star should appear as a single point, but the atmosphere causes the images of the two stars to break up into two patterns of speckles. The speckles move around rapidly, so that each star appears as a single fuzzy blob in long exposure images.
Looming of the Canadian coast as seen from Rochester, New York, on April 16, 1871. Looming is the most noticeable and most often observed of these refraction phenomena. It is an abnormally large refraction of the object that increases the apparent elevation of the distant objects and sometimes allows an observer to see objects that are located below the horizon under normal conditions.
More sophisticated techniques involve capturing multiple images (sometimes thousands) to composite together in an additive process to sharpen images to overcome atmospheric seeing, negating tracking issues, bringing out faint objects with a poor signal-to-noise ratio, and filtering out light pollution.
Images taken with ground-based telescopes are subject to the blurring effect of atmospheric turbulence (seen to the eye as the stars twinkling). Many astronomical imaging programs require higher resolution than is possible without some correction of the images. Lucky imaging is one of several methods used to remove atmospheric blurring.
Atmospheric optical phenomena include: Afterglow; Airglow; Alexander's band, the dark region between the two bows of a double rainbow. Alpenglow; Anthelion; Anticrepuscular rays; Aurora (northern and southern lights, aurora borealis and aurora australis) Belt of Venus; Brocken Spectre; Circumhorizontal arc; Circumzenithal arc; Cloud iridescence ...
The limiting magnitude is determined by the atmospheric seeing, the diameters of the telescopes and the light lost in the system. A larger range of baselines means that a wider variety of science can be done and on a wider range of sources.