Search results
Results from the WOW.Com Content Network
Image 1: Typical industrial distillation towers Image 2: A crude oil vacuum distillation column as used in oil refineries. Continuous distillation, a form of distillation, is an ongoing separation in which a mixture is continuously (without interruption) fed into the process and separated fractions are removed continuously as output streams.
A continuous still can, as its name suggests, sustain a constant process of distillation. This, along with the ability to produce a higher concentration of alcohol in the final distillate, is its main advantage over a pot still, which can only work in batches. Continuous stills are charged with preheated feed liquor at some point in the column.
The still can then be recharged and the process repeated. In continuous distillation, the source materials, vapors, and distillate are kept at a constant composition by carefully replenishing the source material and removing fractions from both vapor and liquid in the system. This results in a more detailed control of the separation process.
The main parts of the conventional batch distillation columns are the following: - pot (include reboiler) - column - condenser to condense the top vapour - product receivers - (entrainer fed) In case of the heteroazeotropic distillation the equipment is completed with a decanter, where the two liquid phases are split.
The simplest standard distillation apparatus is commonly known as a pot still, consisting of a single heated chamber and a vessel to collect purified alcohol. A pot still incorporates only one condensation, whereas other types of distillation equipment have multiple stages which result in higher purification of the more volatile component ...
The process continues until all the most volatile components in the liquid feed boil out of the mixture. This point can be recognized by the rise in temperature shown on the thermometer. For continuous distillation , the feed mixture enters in the middle of the column.
For example, if the feed is a saturated liquid, q = 1 and the slope of the q-line is infinite (drawn as a vertical line). As another example, if the feed is saturated vapor, q = 0 and the slope of the q-line is 0 (a horizontal line). [2] The typical McCabe–Thiele diagram in Figure 1 uses a q-line representing a partially vaporized feed.
Fractionation at total reflux. The Fenske equation in continuous fractional distillation is an equation used for calculating the minimum number of theoretical plates required for the separation of a binary feed stream by a fractionation column that is being operated at total reflux (i.e., which means that no overhead product distillate is being withdrawn from the column).