Search results
Results from the WOW.Com Content Network
Chemical formula. Fe(CN) 2 Molar mass: 107.881 Appearance pale green solid [1] ... Iron(II) cyanide is an inorganic compound with the empirical formula Fe(CN) 2.
It is usually available as the salt potassium ferrocyanide, which has the formula K 4 Fe(CN) 6. [Fe(CN) 6] 4− is a diamagnetic species, featuring low-spin iron(II) center in an octahedral ligand environment. Although many salts of cyanide are highly toxic, ferro- and ferricyanides are less toxic because they tend not to release free cyanide. [1]
Iron shows the characteristic chemical properties of the transition metals, namely the ability to form variable oxidation states differing by steps of one and a very large coordination and organometallic chemistry: indeed, it was the discovery of an iron compound, ferrocene, that revolutionalized the latter field in the 1950s. [1]
Cyanide is quantified by potentiometric titration, a method widely used in gold mining. It can also be determined by titration with silver ion. Some analyses begin with an air-purge of an acidified boiling solution, sweeping the vapors into a basic absorber solution. The cyanide salt absorbed in the basic solution is then analyzed. [47]
Despite the fact that it is prepared from cyanide salts, Prussian blue is not toxic because the cyanide groups are tightly bound to iron. [25] Both ferrocyanide (( Fe 2+ (CN) 6 ) 4− ) and ferricyanide (( Fe 3+ (CN) 6 ) 3− ) are particularly stable and non-toxic polymeric cyanometalates due to the strong iron coordination to cyanide ions.
When metallic iron (oxidation state 0) is placed in a solution of hydrochloric acid, iron(II) chloride is formed, with release of hydrogen gas, by the reaction Fe 0 + 2 H + → Fe 2+ + H 2. Iron(II) is oxidized by hydrogen peroxide to iron(III), forming a hydroxyl radical and a hydroxide ion in the process. This is the Fenton reaction.
[Fe(CN) 6] 3− consists of a Fe 3+ center bound in octahedral geometry to six cyanide ligands. The complex has O h symmetry. The iron is low spin and easily reduced to the related ferrocyanide ion [Fe(CN) 6] 4−, which is a ferrous (Fe 2+) derivative. This redox couple is reversible and entails no making or breaking of Fe–C bonds:
Iron shows the characteristic chemical properties of the transition metals, namely the ability to form variable oxidation states differing by steps of one and a very large coordination and organometallic chemistry: indeed, it was the discovery of an iron compound, ferrocene, that revolutionalized the latter field in the 1950s. [59]