Search results
Results from the WOW.Com Content Network
Prokaryotic DNA Replication is the process by which a prokaryote duplicates its DNA into another copy that is passed on to daughter cells. [1] Although it is often studied in the model organism E. coli, other bacteria show many similarities. [2] Replication is bi-directional and originates at a single origin of replication (OriC). [3]
For most prokaryotic chromosomes, the replicon is the entire chromosome. One notable exception comes from archaea , where two Sulfolobus species have been shown to contain three replicons. Examples of bacterial species that have been found to possess multiple replicons include Rhodobacter sphaeroides (two), Vibrio cholerae , [ 3 ] and ...
In eukaryotic replication, the primase forms a complex with Pol α. [35] Multiple DNA polymerases take on different roles in the DNA replication process. In E. coli, DNA Pol III is the polymerase enzyme primarily responsible for DNA replication. It assembles into a replication complex at the replication fork that exhibits extremely high ...
DNA is a duplex formed by two anti-parallel strands. Following Meselson-Stahl, the process of DNA replication is semi-conservative, whereby during replication the original DNA duplex is separated into two daughter strands (referred to as the leading and lagging strand templates). Each daughter strand becomes part of a new DNA duplex.
At the forefront of the replisome is a DNA helicase that unwinds the two strands of DNA, creating a moving replication fork. The two unwound single strands of DNA serve as templates for DNA polymerase, which moves with the helicase (together with other proteins) to synthesise a complementary copy of each strand. In this way, two identical ...
DnaA is a protein that activates initiation of DNA replication in bacteria. [1] Based on the Replicon Model, a positively active initiator molecule contacts with a particular spot on a circular chromosome called the replicator to start DNA replication. [2] It is a replication initiation factor which promotes the unwinding of DNA at oriC. [1]
The plasmid containing the transposon (the donor plasmid) fuses with a host plasmid (the target plasmid). In the process, the transposon and a short section of host DNA are replicated. The end product is a 'cointegrate' plasmid containing two copies of the transposon. Shapiro (1978) [1] proposed the following mechanism for this process:
The process of semiconservative replication for the site of DNA replication is a fork-like DNA structure, the replication fork, where the DNA helix is open, or unwound, exposing unpaired DNA nucleotides for recognition and base pairing for the incorporation of free nucleotides into double-stranded DNA.