enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    The single-source shortest path problem, in which we have to find shortest paths from a source vertex v to all other vertices in the graph. The single-destination shortest path problem, in which we have to find shortest paths from all vertices in the directed graph to a single destination vertex v. This can be reduced to the single-source ...

  3. Parallel single-source shortest path algorithm - Wikipedia

    en.wikipedia.org/wiki/Parallel_single-source...

    A central problem in algorithmic graph theory is the shortest path problem.One of the generalizations of the shortest path problem is known as the single-source-shortest-paths (SSSP) problem, which consists of finding the shortest paths from a source vertex to all other vertices in the graph.

  4. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...

  5. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    Marc van Kreveld suggested the algorithmic problem of computing shortest paths between vertices in a line arrangement, where the paths are restricted to follow the edges of the arrangement, more quickly than the quadratic time that it would take to apply a shortest path algorithm to the whole arrangement graph. [42]

  6. Johnson's algorithm - Wikipedia

    en.wikipedia.org/wiki/Johnson's_algorithm

    The first three stages of Johnson's algorithm are depicted in the illustration below. The graph on the left of the illustration has two negative edges, but no negative cycles. The center graph shows the new vertex q, a shortest path tree as computed by the Bellman–Ford algorithm with q as starting vertex, and the values h(v) computed at each other node as the length of the shortest path from ...

  7. Bellman–Ford algorithm - Wikipedia

    en.wikipedia.org/wiki/Bellman–Ford_algorithm

    The Bellman–Ford algorithm is an algorithm that computes shortest paths from a single source vertex to all of the other vertices in a weighted digraph. [1] It is slower than Dijkstra's algorithm for the same problem, but more versatile, as it is capable of handling graphs in which some of the edge weights are negative numbers. [2]

  8. Optimal substructure - Wikipedia

    en.wikipedia.org/wiki/Optimal_substructure

    Consider finding a shortest path for traveling between two cities by car, as illustrated in Figure 1. Such an example is likely to exhibit optimal substructure. That is, if the shortest route from Seattle to Los Angeles passes through Portland and then Sacramento, then the shortest route from Portland to Los Angeles must pass through Sacramento too.

  9. Geodetic graph - Wikipedia

    en.wikipedia.org/wiki/Geodetic_graph

    In graph theory, a geodetic graph is an undirected graph such that there exists a unique (unweighted) shortest path between each two vertices.. Geodetic graphs were introduced in 1962 by Øystein Ore, who observed that they generalize a property of trees (in which there exists a unique path between each two vertices regardless of distance), and asked for a characterization of them. [1]